3.320 \(\int \frac{x^8}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=376 \[ \frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{x}{c} \]

[Out]

x/c + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^
(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)
*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + ((b + (b^2 - 2*a*c)/
Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(5/4)*(-b - Sqrt[
b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a
*c])^(1/4)])/(2*2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.573854, antiderivative size = 376, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.278, Rules used = {1367, 1422, 212, 208, 205} \[ \frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{x}{c} \]

Antiderivative was successfully verified.

[In]

Int[x^8/(a + b*x^4 + c*x^8),x]

[Out]

x/c + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^
(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)
*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + ((b + (b^2 - 2*a*c)/
Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(5/4)*(-b - Sqrt[
b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a
*c])^(1/4)])/(2*2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 1367

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d^(2*n - 1)*(d*x)
^(m - 2*n + 1)*(a + b*x^n + c*x^(2*n))^(p + 1))/(c*(m + 2*n*p + 1)), x] - Dist[d^(2*n)/(c*(m + 2*n*p + 1)), In
t[(d*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x^n + c*x^(2*n))^p, x], x] /; Fr
eeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n
*p + 1, 0] && IntegerQ[p]

Rule 1422

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^8}{a+b x^4+c x^8} \, dx &=\frac{x}{c}-\frac{\int \frac{a+b x^4}{a+b x^4+c x^8} \, dx}{c}\\ &=\frac{x}{c}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{2 c}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{2 c}\\ &=\frac{x}{c}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 c \sqrt{-b+\sqrt{b^2-4 a c}}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 c \sqrt{-b+\sqrt{b^2-4 a c}}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 c \sqrt{-b-\sqrt{b^2-4 a c}}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 c \sqrt{-b-\sqrt{b^2-4 a c}}}\\ &=\frac{x}{c}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} c^{5/4} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0377287, size = 70, normalized size = 0.19 \[ \frac{x}{c}-\frac{\text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^4 b \log (x-\text{$\#$1})+a \log (x-\text{$\#$1})}{\text{$\#$1}^3 b+2 \text{$\#$1}^7 c}\& \right ]}{4 c} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/(a + b*x^4 + c*x^8),x]

[Out]

x/c - RootSum[a + b*#1^4 + c*#1^8 & , (a*Log[x - #1] + b*Log[x - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ]/(4*c)

________________________________________________________________________________________

Maple [C]  time = 0.004, size = 59, normalized size = 0.2 \begin{align*}{\frac{x}{c}}+{\frac{1}{4\,c}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{ \left ( -{{\it \_R}}^{4}b-a \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(c*x^8+b*x^4+a),x)

[Out]

x/c+1/4/c*sum((-_R^4*b-a)/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Fricas [B]  time = 4.35127, size = 10701, normalized size = 28.46 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-1/4*(4*c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8
 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*
c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*arctan(1/4*(2*sqrt(1/2)*((b^10*c^5 - 16*a*b^8*c^6 + 98*a^2*b^6*
c^7 - 280*a^3*b^4*c^8 + 352*a^4*b^2*c^9 - 128*a^5*c^10)*x*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c
^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)) + (b^11 - 13*a*b^9*c + 63*a^2*b^7*c^
2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5)*x)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a
*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*
c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)) - (b^11 - 13*a*b^9*c + 63*a^2*b^
7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 + (b^10*c^5 - 16*a*b^8*c^6 + 98*a^2*b^6*c^7 - 280*a^3
*b^4*c^8 + 352*a^4*b^2*c^9 - 128*a^5*c^10)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(
b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 -
8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b
^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7))*sqrt((2*(a^2*b^4 - 3*a^3*b^2*
c + a^4*c^2)*x^2 + sqrt(1/2)*(b^8 - 9*a*b^6*c + 27*a^2*b^4*c^2 - 30*a^3*b^2*c^3 + 8*a^4*c^4 + (b^7*c^5 - 12*a*
b^5*c^6 + 48*a^2*b^3*c^7 - 64*a^3*b*c^8)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^
6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*
a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4
*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))/(a^2*b^4 - 3*a^3*b^2*c + a^4*c
^2)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6
*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13
)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))/(a^4*b^4 - 3*a^5*b^2*c + a^6*c^2)) - 4*c*sqrt(sqrt(1/2)*sqrt(-(b^5
- 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^
3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*
a^2*c^7)))*arctan(1/4*(2*sqrt(1/2)*((b^10*c^5 - 16*a*b^8*c^6 + 98*a^2*b^6*c^7 - 280*a^3*b^4*c^8 + 352*a^4*b^2*
c^9 - 128*a^5*c^10)*x*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c
^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)) - (b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^
4 - 32*a^5*b*c^5)*x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7
)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^1
2 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*
a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4
*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)) + (b^11 - 13*a*b^9*c + 63*a^2*b
^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 - (b^10*c^5 - 16*a*b^8*c^6 + 98*a^2*b^6*c^7 - 280*a^
3*b^4*c^8 + 352*a^4*b^2*c^9 - 128*a^5*c^10)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/
(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c
^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b
^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*sqrt(-(b^5 -
 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3
*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a
^2*c^7))*sqrt((2*(a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*x^2 + sqrt(1/2)*(b^8 - 9*a*b^6*c + 27*a^2*b^4*c^2 - 30*a^3*
b^2*c^3 + 8*a^4*c^4 - (b^7*c^5 - 12*a*b^5*c^6 + 48*a^2*b^3*c^7 - 64*a^3*b*c^8)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*
b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(-(b^5 - 5
*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b
^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2
*c^7)))/(a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)))/(a^4*b^4 - 3*a^5*b^2*c + a^6*c^2)) - c*sqrt(sqrt(1/2)*sqrt(-(b^5 -
 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3
*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a
^2*c^7)))*log((a*b^4 - 3*a^2*b^2*c + a^3*c^2)*x + 1/2*(b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (b^5*c^5
 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 1
2*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5
 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*
a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) + c*sqrt(sqrt(1/2)*sqrt(
-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2
- 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6
 + 16*a^2*c^7)))*log((a*b^4 - 3*a^2*b^2*c + a^3*c^2)*x - 1/2*(b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (
b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c
^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (
b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^1
0 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) - c*sqrt(sqrt(1/2
)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b
^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*
b^2*c^6 + 16*a^2*c^7)))*log((a*b^4 - 3*a^2*b^2*c + a^3*c^2)*x + 1/2*(b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*
c^3 + (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)
/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*
c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(
b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) + c*sqrt(s
qrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 1
1*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5
 - 8*a*b^2*c^6 + 16*a^2*c^7)))*log((a*b^4 - 3*a^2*b^2*c + a^3*c^2)*x - 1/2*(b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 -
 4*a^3*c^3 + (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a
^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5
*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4
*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) - 4
*x)/c

________________________________________________________________________________________

Sympy [A]  time = 15.8387, size = 218, normalized size = 0.58 \begin{align*} \operatorname{RootSum}{\left (t^{8} \left (16777216 a^{4} c^{9} - 16777216 a^{3} b^{2} c^{8} + 6291456 a^{2} b^{4} c^{7} - 1048576 a b^{6} c^{6} + 65536 b^{8} c^{5}\right ) + t^{4} \left (20480 a^{4} b c^{4} - 30720 a^{3} b^{3} c^{3} + 15616 a^{2} b^{5} c^{2} - 3328 a b^{7} c + 256 b^{9}\right ) + a^{5}, \left ( t \mapsto t \log{\left (x + \frac{16384 t^{5} a^{2} b c^{7} - 8192 t^{5} a b^{3} c^{6} + 1024 t^{5} b^{5} c^{5} - 8 t a^{3} c^{3} + 36 t a^{2} b^{2} c^{2} - 24 t a b^{4} c + 4 t b^{6}}{a^{3} c^{2} - 3 a^{2} b^{2} c + a b^{4}} \right )} \right )\right )} + \frac{x}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**8*(16777216*a**4*c**9 - 16777216*a**3*b**2*c**8 + 6291456*a**2*b**4*c**7 - 1048576*a*b**6*c**6 + 6
5536*b**8*c**5) + _t**4*(20480*a**4*b*c**4 - 30720*a**3*b**3*c**3 + 15616*a**2*b**5*c**2 - 3328*a*b**7*c + 256
*b**9) + a**5, Lambda(_t, _t*log(x + (16384*_t**5*a**2*b*c**7 - 8192*_t**5*a*b**3*c**6 + 1024*_t**5*b**5*c**5
- 8*_t*a**3*c**3 + 36*_t*a**2*b**2*c**2 - 24*_t*a*b**4*c + 4*_t*b**6)/(a**3*c**2 - 3*a**2*b**2*c + a*b**4))))
+ x/c

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{8}}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(x^8/(c*x^8 + b*x^4 + a), x)